Plot method for ITP results on functional ANOVA
plot.ITPaov.Rd
plot
method for class "ITPaov
".
Plotting function creating a graphical output of the ITP for the test on a functional analysis of variance:
functional data, and ITP-adjusted p-values of the F-tests on the whole model and on each factor are plotted.
Arguments
- x
The object to be plotted. An object of class "
ITPaov
", usually, a result of a call toITPaovbspline
.- xrange
Range of the
x
axis.- alpha1
First level of significance used to select and display significant effects. Default is
alpha1 = 0.05
.- alpha2
Second level of significance used to select and display significant effects. Default is
alpha1 = 0.01
.alpha1
andalpha2
are s.t.alpha2 < alpha1
. Otherwise the two values are switched.- plot.adjpval
A logical indicating wether the plots of adjusted p-values have to be done. Default is
plot_adjpval = FALSE
.- ylim
Range of the
y
axis. Default isNULL
, giving a plot with authomatic range for functional data.- col
Colors for the plot of functional data. Default is
col = 1
.- ylab
Label of
y
axis of the plot of functional data. Default is "Functional Data
".- main
An overall title for the plots (it will be pasted to "Functional Data and F-test" for the first plot and to factor names for the other plots).
- lwd
Line width for the plot of functional data. Default is
lwd=1
.- pch
Point character for the plot of adjusted p-values. Default is
pch=16
.- ...
Additional plotting arguments that can be used with function
plot
, such asgraphical parameters
(seepar
).
Value
No value returned.
The function produces a graphical output of the ITP results: the plot of the functional data and the one of the adjusted p-values.
The portions of the domain selected as significant by the test at level alpha1
and alpha2
are highlighted in the plot of the adjusted p-value function and in the one of functional data by gray areas (light and dark gray, respectively).
The first plot reports the gray areas corresponding to a significant F-test on the whole model. The remaining plots report the gray areas corresponding to significant F-tests on each factor (with colors corresponding to the levels of the factor).
References
Pini, A., & Vantini, S. (2017). Interval-wise testing for functional data. Journal of Nonparametric Statistics, 29(2), 407-424
Pini, A., Vantini, S., Colosimo, B. M., & Grasso, M. (2018). Domain‐selective functional analysis of variance for supervised statistical profile monitoring of signal data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 67(1), 55-81.
Abramowicz, K., Hager, C. K., Pini, A., Schelin, L., Sjostedt de Luna, S., & Vantini, S. (2018). Nonparametric inference for functional‐on‐scalar linear models applied to knee kinematic hop data after injury of the anterior cruciate ligament. Scandinavian Journal of Statistics 45(4), 1036-1061.
See also
ITPimage
for the plot of p-values heatmaps.
See also ITP1bspline
, ITP2bspline
to perform the ITP to test on the mean of one population and test of differences between two populations.
See IWTaov
for functional ANOVA not based on B-spline basis representation
Examples
temperature <- rbind(NASAtemp$milan,NASAtemp$paris)
groups <- c(rep(0,22),rep(1,22))
# Performing the ITP
ITP.result <- ITPaovbspline(temperature ~ groups,B=100,nknots=20,order=3)
#>
#> ── First step: basis expansion ─────────────────────────────────────────────────
#> Swapping 'y' and 'argvals', because 'y' is simpler,
#> and 'argvals' should be; now dim(argvals) = 365 ; dim(y) = 365 x 44
#>
#> ── Second step: joint univariate tests ─────────────────────────────────────────
#> Error in eval(predvars, data, env): object 'groups' not found
# Summary of the ITP results
summary(ITP.result)
#> Error: object 'ITP.result' not found
# Plot of the ITP results
graphics::layout(1)
plot(ITP.result)
#> Error: object 'ITP.result' not found
# All graphics on the same device
graphics::layout(matrix(1:4,nrow=2,byrow=FALSE))
plot(ITP.result,main='NASA data', plot_adjpval = TRUE,xlab='Day',xrange=c(1,365))
#> Error: object 'ITP.result' not found