Two population Global Testing procedure
Global2.Rd
The function implements the Global Testing procedure for testing mean differences between two functional populations. Functional data are tested locally and unadjusted and adjusted p-value functions are provided. The unadjusted p-value function controls the point-wise error rate. The adjusted p-value function controls the interval-wise error rate.
Arguments
- data1
First population's data. Either pointwise evaluations of the functional data set on a uniform grid, or a
fd
object from the packagefda
. If pointwise evaluations are provided,data2
is a matrix of dimensionsc(n1,J)
, withJ
evaluations on columns andn1
units on rows.- data2
Second population's data. Either pointwise evaluations of the functional data set on a uniform grid, or a
fd
object from the packagefda
. If pointwise evaluations are provided,data2
is a matrix of dimensionsc(n1,J)
, withJ
evaluations on columns andn2
units on rows.- mu
Functional mean difference under the null hypothesis. Three possibilities are available for
mu
: a constant (in this case, a constant function is used); aJ
-dimensional vector containing the evaluations on the same grid whichdata
are evaluated; afd
object from the packagefda
containing one function. The default ismu=0
.- B
The number of iterations of the MC algorithm to evaluate the p-values of the permutation tests. The defualt is
B=1000
.- paired
A logical indicating whether a paired test has to be performed. Default is
FALSE
.- dx
Used only if a
fd
object is provided. In this case,dx
is the size of the discretization step of the grid used to evaluate functional data. If set toNULL
, a grid of size 100 is used. Default isNULL
.- stat
Test statistic used for the global test. Possible values are:
"Integral"
: integral of the squared sample mean difference;"Max"
: maximum of the squared sample mean difference;"Integral_std"
: integral of the squared t-test statistic;"Max_std"
: maximum of the squared t-test statistic. Default is"Integral"
.
Value
An object of class fdatest2
, containing the following components:
test
: String vector indicating the type of test performed. In this case equal to"2pop"
.mu
: Evaluation on a grid of the functional mean difference under the null hypothesis (as entered by the user).unadjusted_pval
: Evaluation on a grid of the unadjusted p-value function (it is a constant function according to the global testing procedure).adjusted_pval
: Evaluation on a grid of the adjusted p-value function.data.eval
: Evaluation on a grid of the functional data.ord_labels
: Vector of labels indicating the group membership ofdata.eval
.
References
A. Pini and S. Vantini (2017). The Interval Testing Procedure: Inference for Functional Data Controlling the Family Wise Error Rate on Intervals. Biometrics 73(3): 835–845.
Pini, A., & Vantini, S. (2017). Interval-wise testing for functional data. Journal of Nonparametric Statistics, 29(2), 407-424
See also
See also IWT2
for local inference. See
plot.fdatest2
for plotting the results.
Examples
# Importing the NASA temperatures data set
data(NASAtemp)
# Performing the Global for two populations
Global.result <- Global2(NASAtemp$paris, NASAtemp$milan)
# Plotting the results of the Global
plot(
Global.result,
xrange = c(0, 12),
main = 'Global results for testing mean differences'
)
# Selecting the significant components at 5% level
which(Global.result$adjusted_pval < 0.05)
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#> [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#> [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#> [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#> [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#> [91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#> [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#> [127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#> [145] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#> [163] 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#> [181] 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
#> [199] 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#> [217] 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
#> [235] 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#> [253] 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
#> [271] 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#> [289] 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
#> [307] 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
#> [325] 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#> [343] 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
#> [361] 361 362 363 364 365