Two population functional Benjamini-Hochberg procedure
FDR2.Rd
The function implements the functional Benjamini Hochberg (fBH) procedure for testing mean differences between two functional populations. Functional data are tested locally and unadjusted and adjusted p-value functions are provided. The unadjusted p-value function controls the point-wise error rate. The adjusted p-value function controls the family-wise error rate asymptotically.
Arguments
- data1
First population's data. Either pointwise evaluations of the functional data set on a uniform grid, or a
fd
object from the packagefda
. If pointwise evaluations are provided,data2
is a matrix of dimensionsc(n1,J)
, withJ
evaluations on columns andn1
units on rows.- data2
Second population's data. Either pointwise evaluations of the functional data set on a uniform grid, or a
fd
object from the packagefda
. If pointwise evaluations are provided,data2
is a matrix of dimensionsc(n1,J)
, withJ
evaluations on columns andn2
units on rows.- mu
Functional mean difference under the null hypothesis. Three possibilities are available for
mu
: a constant (in this case, a constant function is used); aJ
-dimensional vector containing the evaluations on the same grid whichdata
are evaluated; afd
object from the packagefda
containing one function. The default ismu=0
.- B
The number of iterations of the MC algorithm to evaluate the p-values of the permutation tests. The defualt is
B=1000
.- paired
A logical indicating whether a paired test has to be performed. Default is
FALSE
.- dx
Used only if a
fd
object is provided. In this case,dx
is the size of the discretization step of the grid used to evaluate functional data. If set toNULL
, a grid of size 100 is used. Default isNULL
.- alternative
A character string specifying the alternative hypothesis, must be one of "
two.sided
" (default), "greater
" or "less
".
Value
An object of class fdatest2
containing the following components:
test
: String vector indicating the type of test performed. In this case equal to"2pop"
.mu
: Evaluation on a grid of the functional mean difference under the null hypothesis (as entered by the user).unadjusted_pval
: Evaluation on a grid of the unadjusted p-value function.adjusted_pval
: Evaluation on a grid of the adjusted p-value function.data.eval
: Evaluation on a grid of the functional data.ord_labels
: Vector of labels indicating the group membership ofdata.eval
.
References
Lundtorp Olsen, N., Pini, A., & Vantini, S. (2021). False discovery rate for functional data TEST 30, 784–809.
See also
See also plot.fdatest2
for plotting the results.
Examples
# Importing the NASA temperatures data set
data(NASAtemp)
# Performing the fBH for two populations
FDR.result <- FDR2(NASAtemp$paris, NASAtemp$milan)
# Plotting the results of the fBH
plot(
FDR.result,
xrange = c(0, 12),
main = 'FDR results for testing mean differences'
)
# Selecting the significant components at 5% level
which(FDR.result$adjusted_pval < 0.05)
#> [1] 49 50 61 64 65 69 70 71 72 73 74 81 88 89 90 91 92 93
#> [19] 94 95 96 97 101 102 103 104 105 106 107 108 109 110 111 112 113 114
#> [37] 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#> [55] 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
#> [73] 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#> [91] 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#> [109] 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#> [127] 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#> [145] 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
#> [163] 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
#> [181] 259 260 261 262 264 265 266 267 269 270 271 272 273 274 275 276 281 286
#> [199] 288 289 290 291 299